
Journal of Statistical Physics, Vol. 88, Nos. 1/2, 1997 
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Asymptotically one-dimensional diffusion processes are studied on the class of 
fractals called abc-gaskets. The class is a set of certain variants of the Sierpiflski 
gasket containing infinitely many fractals without any nondegenerate fixed point 
of renormalization maps. While the "standard" method of constructing diffu- 
sions on the Sierpifiski gasket and on nested fractals relies on the existence of 
a nondegenerate fixed point and hence it is not applicable to all abc-gaskets, the 
asymptotically one-dimensional diffusion is constructed on any abc-gasket by 
means of an unstable degenerate fixed point. To this end, the generating func- 
tions for numbers of steps of anisotropic random walks on the abc-gaskets are 
analyzed, along the line of the authors' previous studies. In addition, a general 
stategy of handling random walk sequences with more than one parameter for 
the construction of asymptotically one-dimensional diffusion is proposed. 

KEY WORDS: Diffusion process; random walk; finitely ramified fractal; 
branching process; renormalization group. 

1. I N T R O D U C T I O N  

T h e  p u r p o s e  o f  this  p a p e r  is to  desc r ibe  the  essen t ia l  p a r t  o f  the  c o n s t r u c -  

t i o n  o f  a s y m p t o t i c a l l y  o n e - d i m e n s i o n a l  d i f fus ions  on  the  class o f  f rac ta ls  

ca l l ed  abc-gaskets ,  ~8~ a c c o r d i n g  to  the  p r o g r a m  o f  ref. 9. O u r  c o n c l u s i o n  is 

T h e o r e m  2.2. T h e  resu l t  was  a n n o u n c e d  in ref. 9 w i t h o u t  proof .  

A di f fus ion p roces s  on  a f rac ta l  G c a n  be  v i e w e d  as a " c o n t i n u u m  

l imi t "  o f  r a n d o m  wa lks  o n  a p p r o p r i a t e  la t t ices  on  G by  the  f o l l o w i n g  p r o -  

cedure :  f irst ly c h o o s e  la t t ices  GN, N e  N,  o n  G so t h a t  G N m o n o t o n i c a l l y  
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"converges" to G: G1 c G 2 c . . .  --~ G; Secondly consider a random walk on 
each GN satisfying the "consistency condition" (see (2.5) and (2.6)) which 
states that the random walk on GN is a coarse-grained walk of the random 
walk on GN+I; and then show the "convergence" of the sequence of 
random walks to a stochastic process on G called a diffusion process. In 
this procedure, the renormalization map plays an essential role, which 
yields the consistency condition between random walks on successive lat- 
tices G N and GN+~. 

Our interest is diffusion processes on fractals. Standard constructions 
of diffusion processes on finitely ramified fractals, such as the Sierpifiski 
gasket ~5'4) or the nested fractals, ~7~ are essentially based on the existence 
of non-degenerate fixed points of renormalization maps (for the termi- 
nology, see Section 2). At first sight, the standard method might seem to be 
generalized to any simple variants of the Sierpifiski gasket. In fact there are 
many examples of finitely ramified fractals that do not admit the standard 
construction of diffusion processes because of the absence of non- 
degenerate fixed points. Such examples are found in the class of abc-gaskets 
introduced in ref. 8. 

In this paper, we study a quite different type of diffusion processes on abc- 
gaskets called asymptotically one-dimensional diffusions based on the exist- 
ence of unstable degenerate fixed points of renormalization maps (for the ter- 
minology, see Section 2). This concept was introduced in refs. 9 and 10 for the 
diffusion on Sierpifiski gasket, and generalized for scale-irregular fractals, ~7) 
and pursued on Sierpifiski carpet in the context of resistor networksJ 2,3) 

In what follows, we study the asymptotically one-dimensional diffusions 
on abc-gaskets along the line of ref. 9 where this work was announced. 

After this work was completed, there appeared the following works 
related to the same problems. Firstly, general convergence results for 
branching processes were given in ref. 11, which would substitute the 
results in ref. 10 (and perhaps may even simplify some arguments in 
Section 4). Secondly, an alternative construction of the asymptotically one- 
dimensional (lower dimensional) diffusions on a subclass of nested fractals 
was studied ~5) by means of a general theory which relates the construction 
of diffusion processes to that of Dirichlet f o r m s .  ( 6 ' 1 6 ' 1 2 ' 1 3 )  Although their 
class of fractals does not cover all the abc-gaskets, some detailed 
asymptotic estimates on the heat kernels pt(x, x) are obtained and the 
homogenization problems are considered. Their work, ~5) based on the 
theory of Dirichlet forms, would simplify the analysis of F in Proposi- 
tion 4.2 below and substitute the argument using the theory of branching 
processes. See also remarks at the end of Section 4. Finally, we notice that 
a characterization of asymptotically one-dimensional diffusions on the 
Sierpifiski gasket by the exit distributions was given in ref. 18. 
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This paper is organized as follows. In Section 2, we give the definition 
of abc-gaskets, formulate the problem, and state the result. The proof  is 
given in the subsequent sections. In Section 3, we give the condition that 
a degenerate fixed point of the renormalization map is unstable and 
choose a sequence of anisotropic random walks on abc-gaskets keeping the 
consistency which guarantees the construction of the asymptotically one- 
dimensional diffusion. In Section 4, we give the estimate on the generating 
function for numbers of steps of anisotropic random walks on the abc- 
gaskets that are sufficient for the construction of the asymptotically one- 
dimensional diffusion along the line of ref. 9. The algebraic part of our 
proof of Proposition 4.2 is computer-aided because of the routine of rather 
lengthy calculations. In Appendix, a general strategy for the choice of 
sequence of random walks with a multi-parameter are given and an open 
problem is proposed. 

2. M O D E L  A N D  R E S U L T S  

The a b c - G a s k e t s  

The abc-gasket was introduced in ref. 8 (by an intrinsic definition). 
Here we will give another, intuitive, definition. Let us place, on a plane, a 
triangle A0 whose sides are of unit length. Let a, b, and c be positive 
integers, and put a + b + c smaller triangles Ai, i = 1, 2 ..... a + b + c in A o as 
in Fig. 1, so that each A i shares one or two sides in common with A o, 
and that no two small triangles have points in common except possibly 
for the vertices on the edges of A0. The small triangles are numbered so 
that the triangles Ai, i =  1, 2,.., a +  1, have their horizontal edges on the 
horizontal edge of A0; the triangles A~, i = a + l ,  a + 2  ..... a + b +  1, have 
their right edges on the right edge of A0; the triangles Ag, i = a  +b + 1, 
a + b + 2 , . . . , a + b + c ,  1, have their left edges on the left edge of A0. The 
sizes of the triangles are irrelevant for our subsequent discussion. 

Next, consider the affine map ~o~, i = 1, 2,..., a + b + c, which respec- 
tively maps A 0 onto A,.. We extend cpl to the whole plane as an affine map 
denote it by the same symbol ~o 1. We denote the inverse of the map by 
~o 11. Let /~o = A0, as the union of three line segments, and define Hn +1, 
n = 1, 2 ..... inductively by 

>) / ~ n + l = q )  l n 1 eio(,Ol(Hn , n=O,  1,2 .... (2.1) 
i = 1  

and define/]r~ = U~_o/qn. 
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a+ l  

Fig. 1. The block of pre-abc-gasket with a = 2, b = 4, c = 3. 

Note  that, by definition, / 7 0 c / 7 1  ~ / 7 2  C - . - .  Figures o f  first two 
construct ions /7~ and /72 are given in Figs. 1 and 2, respectively. As n is 
increased, the f igu re /7 ,  extends outwards,  with the smallest structure being 
fixed (the scales of  Fig. 1 and of  2 are different). The role of  9~ playing special 
par t  in (2.1) means that  /7,  extends in the right (and upward)  direction, 

A 

Fig. 2. The second stage construction of pre-abc-gasket with a = 2, b = 4, c = 3. 
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and that the left vertex of A 0 remains as the leftmost vertex of Hn for 
all n, hence it is also the leftmost vertex o f / ~ ,  which we denote by O. All 
the vertices of H~j except O have four neighbor points. (By a neighbor 
point we mean a vertex connected by a line segment.) We can let O also 

~ t  oo ~ t  have four neighbor points by defining H a analogously; ~ '  = U~=0 H . ,  H a  
where - ' H ,  is defined recursively by 

~ t  n l I J Hn+l=~Oa+l ~OiO~Oan+l(/]n , n = 0 ,  1,2,... (2.2) 
\ i 1 

The rightmost vertex of H ,  for all n is the same, which we denote by O'. 
A pre-abc-gasket (of scale N) H N is then defined by 

ON = q~N(/~) U T(q~+ l(/J~)) (2.3) 

where T denotes a translation on the plane such that T ( O ' ) =  O. (Actually, 
this procedure of doubling the figure makes all the vertices including O 
have similar structures of the two smallest blocks containing the vertex. We 
do this for technical simplicity in the analysis of random walks.) We denote 
the vertices of H N by G x .  

The abc-gasket G is defined to be the closure of U n~ 0 H, .  (We take 
the closure so that the abe-gasket become a complete metric space.) G has 
infinitely small structures, whereas H N has a non-zero smallest structure 
(specified by the scale N). Each smallest scale triangle of H N to the right 

N - - n o  o ' -  of O has a representation cpt qh, q~;~ . . . . .  opt(A0), for some non- 
negative integer n and a set of positive integers i~ . . . i~,  and a similar 
representation also for the smallest scale triangles to the left of O. We call 
an intersection of the abc-gasket G and the interior of  one of such triangles 
a block of scale N. 

In case of a = b = c = 1 the above construction coincides with that of 
the Sierpifiski gasket. 

R a n d o m  W a l k  o n  t h e  P r e - a b c - G a s k e t  

We consider random walks with nearest neighbor jumps on H~. 
Probability laws of random walks on Hn are specified by assigning transi- 
tion probabilities to each bond (edge) of H~,. 

To this end, we first assign a conductivity g(b) to a non-oriented bond 
b as follows. Let ,/ and ( be positive constants. If b is a horizontal bond, 
g(b) = 1. If b is a bond connecting upper left and lower right vertices, 
g(b) =r/. If b is a bond connecting upper right and lower left vertices, 
g(b) = ~. Next we define a relative probability if(b) of transition along a 
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p D q 

q P 

r A s q s 

Fig. 3. We classify vertices of a pre-abc gasket into 6 groups A, B, C, D, E, and F according 
to the possible directions of transitions from each vertex. We refer to the possible directions 
by the symbols p, q, r, and s. 

directed bond b to be g(b), where b denotes a bond b with direction. Lastly 
we normalize the/~(b) and obtain a transition probabil i ty p(b) so that the 
sum of p(b) 's  for directed bonds b emerging from a vertex is equal to 1. 
The constants ~/and ( parametrize the anisotropy between horizontal and 
off-horizontal directions. 

For  convenience' sake, we classify all the vertices of pre-abc-gasket 11, 
into 6 groups: types A, B, C, D, E, and F, respectively, according to the 
possible directions of bonds emerging from each vertex. (See Fig. 2 and 
Fig. 3.) In Fig. 2, examples are shown for vertices belonging to the six 
groups A, B, C, D, E, and F, respectively. As is shown in Fig. 3, a vertex 
of A, B, or C type has four bonds, of which directions are referred to as 
p, q, r, and s, respectively, while a vertex of D, E, or F type has two bonds 
(e.g., the directions of the two bonds emerging from a vertex of D type are 
referred to as p, q.) As a result, all the directed bonds of the pre-abc-gasket 
are classified into 18 types which we denote by Ap, Aq ..... Fr, respectively. 
The transition probabilities assigned to them are shown in Table I. If  a = 1, 
the type D does not exist. For  simplicity, we assume a > 1, b > 1, and c > 1. 
(A reader who is interested in the case a = 1 etc. should neglect irrelevant 
statements and formulae below.) 

The R e n o r m a l i z a t i o n  M a p  

We next consider the consistency condition between random walks on 
/am and on H n_ 1. Let us fix a vertex of H , _  1 and cut the block(s) of 11,, 
to which the vertex velongs. To be specific, we assume that the vertex is of 
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Table I. Transition Probabilit ies 

111 

p q r s 

A q/(2 + r 1 + ~) ~/(2 + ~1 + ~) 1/(2 + r/+ ~) 1/(2 + r/+ ~) 
B r//(1 +2q +~) ~/(1 +D/+~)  1/(1 +2r/+ ~) f//(1 + 2r/+~) 
C r//(l +~/+ 2r ~/(1 +~/+2r l/(1 +r/+2r r + r /+  2r 
D q/(t/+ r (/(~/+ r 0 0 
E 0 ~/(1 +r 1/(1 +r 0 
F r//(1 +t/) 0 1/(1 +q) 0 

the type A. The vertex A belongs to two blocks (Fig. 4). We denote the 
union of these blocks by K and the vertices of H n_ 1 contained in K by A, 

v t v v Ap, Aq, At, and As. Let O(A, t), t =p ,  q, r, s, be the set of all walks on K 
t v t starting at the vertex A with reaching to any one of the vertices Ap, Aq, Ar, 

and A" before the end at A',. Similarly we define the set O(X, t) of walks 
for X = B, C, .... F, and for t = p, q, r, s, such that bonds of X, type exist. Put  

O(X) = U Q(x ,  t), x =  A, B,..., F (2.4) 
t p,q,r,s 

We assign a probability to each walk in K2(X) by making a product  of the 
transition probabilities set in Table I. The probability measure on O(X) 
defined as above is denoted by Px.,.c. 

Proposition 2.1. Let X =  A, B,..., F, and let t = p, q, r, s, such that 
bonds of X, type exist. The probability Px,,,r t)) is equal to the trans- 
ition probability assigned to X, given by Table I with r /and ~ replaced by 

(ac +a+c) q2 +(ac +a+b) q( +(ac +b +c) ~l+ac( 
Y(q, ~)=  (2.5) x(q, r 

(ab+a+b)~2 +(ab+a+c)~l~ +(ab+b+c)~ +ab~l 
z ( ,1 ,  ~) = 

x(,1, r 
(2.6) 

respectively, where 

X(~I, ~)=bol( +(bc +a+c) q+(bc +a+b) ~ +bc +b+c 

The proof  of this proposition will be sketched in Section 4. We call the set 
of Eqs. (2.5) and (2.6), the renormalization map. 

822/88/1-2-8 
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A random walk on the lattice H N with (r/, () = (r/N, (N)  in Table I and 
a random walk on the coarser lattice H u 1 with (r/, ( ) =  (~/N-1, (N--1) are 
consistent (i.e., the latter is a coarse-grained walk of the former), if the 
following relations hold: 

r/N 1 = Y(r/N, (N) (2.7) 

~N--1 = Z(?]N, ~N) (2.8) 

From Random Walks  to Di f fusion 

In order to obtain a diffusion on the abe-gasket G, we must take the 
limit N---, ov of a consistent sequence of random walks on H ~  satisfying 
(2.7) and (2.8). The simplest choice of the random walks is to put 
( r /N, (N)=( r / , ,  ( , ) ,  N ~ N ,  where (r/, ,  ( , )  is a fixed point of  the renor- 
realization map (2.5)-(2.6). The standard method to construct a diffusion 
on Sierpifiski gasket or a nested fractal belongs to this picture, where the 
fixed point is assumed to be non-degenerate, i.e. 

r/ , ,  ( ,  e(0,  or) (2.9) 

Note that, if the fixed point is degenerate, namely 

q , = ( , = 0 ,  or r / , < ( , = o e ,  or ( , < r / , = o v  (2.10) 

holds, the random walker can move in only one direction and hence, a 
sample path of the resulting diffusion is almost surely bound in a single 
line. 

Asymptot ica l ly  One- Dimensional  Di f fusion 

As a shown in Proposition 3.1, the renormalization map (2.5)-(2.6) 
has a non-degenerate fixed point, if and only if 

a l < b - I + c - 1 ,  b I < C  1-I -a- l ,  c - l < a - l - l - b - I  (2.11) 

hold. Therefore, for abe-gaskets without (2.11), the standard method fails 
to construct non-degenerate diffusions. Including such cases, we can con- 
struct a quite different type of diffusion on any abe-gasket which we call an 
asymptotically one-dimensional diffusion. 

In Proposition 3.2 we show that there exists a trajectory (r/N, (N), 
N e  N, of renormalization map satisfying 

r/N,~N>O, N 6 N  (2.12) 

lim (r/N, (N) = (0, 0) (2.13) 
N~co  
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if 

a l < b - l + c  1 (2.14) 

holds. (Note that the direction of increasing N is the inverse direction of 
the renormalization map.) The conditions (2.12) and (2.13) imply that the 
degenerate fixed point (0, 0) of the renormalization map (2.5)-(2.6) is 
unstable. The asymptotically one-dimensional diffusion process is con- 
structed as the limit of random walks o n  H N with (r/, ~)=  (r/N, ~N) in 
Table I. 

We state our main result of the present paper. 

T h e o r e m  2.2. Under the assumption (2.14), there exists a con- 
tinuous, non-constant, non-degenerate strong Markov process X,, t > 0 on 
the abc-gasket such that 

(1) X~ is symmetric with respect to the Haussdorff measure which 
assigns mass (a + b + c) -N to each block of scale N; 

(2) the transition semigroup Pt defined by P , f ( x ) = E X f ( X , )  maps 
the space of bounded continuous functions into itself; 

(3) X, is a weak limit of a sequence of random walks on HN, 
N =  1, 2, 3,..., with transition probabilities given by Table I with 
(r/, ~)=(r/N, (N) satisfying (2.12) and (2.13) and with the time 
unit [ ( a + b ) ( a + b + c ) ]  N (i.e., the time between succesive 
jumps on HN). 

We call the resulting process X, in Theorem 2.2 the asymptotically one- 
dimensional diffusion process. 

Remark. (1) Actual choices of r/N and (~  are given in Proposi- 
tion 3.2. The choice of the Haussdorff measure is a natural extension of that 
for Sierpifiski gasket [ ref. 4, Lemma 1.1 ]. 

(2) The assumption (2.14) guarantees that the degenerate fixed point 
(0, 0) of the renormalization map (2.5)-(2.6) becomes unstable. In case 
(2.14) fails, then either b ~ < c  1 + a - 1  or c 1 < a  ~ + b  -~ hold, so that at 
least one of the degenerate fixed points is always unstable, and by rotating 
the figure by 120 ~ (or 240 ~ , respectively), we can repeat the arguments in 
this paper to construct the diffusion process for any choice of a, b, c. 

(3) One way to describe the asymptotically one-dimensional diffu- 
sion is as follows. Suppose that we are given a degenerate diffusion process 
on an abc-gasket. Let us perturb this situation by giving infinitesimal 
probabilities for off-horizontal jumps in a microscopic scale. Then we have 
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two possibilities: either the perturbative effect survices or vanishes in the 
macroscopic scale accoding to whether the degenerate fixed point of the 
renormalization map is unstable or stable. The asymptotically one-dimen- 
sional diffusion belongs to the former picture. 

(4) From the above theorem, we observe the tendency that the 
extreme anisotropy in the microscopic scale disappears in the macroscopic 
scale and the isotropy is gradually restored/9'2'3'7,14) This phenomenon is 
not observed on regular spaces such as Euclidean spaces and smooth 
manifolds. It will be a special feature of fractal spaces of which mechanism 
may be clarified in an appropriate general framework. For a sketch of the 
mechanism of this phenomenon, see ref. 2. 

3. TRANSITION PROBABILITIES 

Fixed Points 

Let us study fixed points of the renormalization map (2.5)-(2.6): 

v/= Y(t/, (), ( =  Z(v/, () (3.1) 

It is convenient to consider the homogeneous equations corresponding to 
(2.5) and (2.6): 

X(~,  v l, ( )  = bc(~ + v/)(~ + () + O~ (3.2) 

Y(~,  q, ~) = ca(v 1 + ~)(v/+ () + Or/ (3.3) 

Z(~ ,  rl, ( )  = a b ( (  + ~)(( + v/) + 0( (3.4) 

where 

O=a(q +~) + b(r + ~) + c(~ + V) 

Note that 

r(q, ~)= 

(3.5) 

Y(1, r/, () Z(1, r/, () 
X(1, r/, ( ) '  Z(r/, () X(1, r/, ~) (3.6) 

Then the fixed point Eq. (3.1) is written as 

~:v/:~ = X(~, ~/, (): Y(~,v/,~) :Z(~,v/,() (3.7) 
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This has trivial solutions 

~ : q : ( =  1 : 0 ; 0 , 0 : 1 : 0 , 0 : 0 : 1  (3.8) 

which give degenerate random walks. 

Proposition 3.1. The necessary and sufficient condition that (3.7) 
has a nontrivial (positive) solution is 

a-~ < b - l  + c - t ,  b - l  <c-1._t_a 1, c l < a - 1 + b - 1  (3�9 

Moreover the nontrivial solution is given by 

1 1 1 
~ Y 
'~:tl:',- a - l  + b - l  + c - t  a-~ b 1+c 1 a - l  +b-1  c -1 (3�9 

We omit the proof  because it is easy and the result is not used later. It is 
also an easy exercise to show that the above nontrivial solution is a stable 
fixed point�9 

On the other hand, the trivial fixed points (3.8) may be stable or 
unstable. In fact, the proof  of Proposition 3.2 below implies that the solu- 
tion ~ : r / : ( = l : 0 : 0  to (3�9 i.e., the solution 0/, ~) = (0, 0) to (3.1) is 
unstable if 

a -1 < b  - l  + c  - l  (3.11) 

Trajectory Emerging from Unstable Degenerate Fixed Point 

In what follows, we assume (3.11) without loss of generality, since at 
least one of the inequalities of (3.9) must hold. 

Proposition 3.2. There exists two 
1, 2, 3 ..... of  positive numbers which satisfy 

q,,-1 = Y(r/,, (n), 

( ._,  = z ( , j o ,  ~.), 

C10 n < qn < C2 6-n, 

C3(~--n < (n < C4t~ -n, 

sequences ~n 

n =  1, 2,... 

n =  1, 2,... 

n =  1, 2,... 

n =  1, 2,... 

and ( , ,  n =  

(3.12) 

(3.13) 

(3.14) 

O.15) 
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Proof. Fixing N E Z + ,  we consider sequences {t/~N~ j 0 ~< n ~<N} and 
{~u) I 0 ~< n ~< N} satisfying 

~/~U) = y(~I~N),~N)), n = N , N - - 1  ..... 2, 1 (3.16) 

~(N)n 1 =Z(rl~U),~N)), n = N , N - - 1  ..... 2, 1 (3.17) 

and define random walks on Hn with transition probabilities given by 
Table I with ~/= n (N) and ~ = ~-(N) The recursion relations (3.16) and (3.17) 

~ n  ~ n  " 

are viewed as the consistency condition of probability laws of random 
walks on Hn and on H ,  1, which imply that the random walks on H ,  are 
obtained by neglecting the fine structure of those on Hm, rn > n. 

Put 

fi _ (a  + 1)(b + c)  (3 .18)  
b c + b + c  

Then, (3.11) implies O > 1. 
Choose the initial values 

rl~u)=cd N~r (3.19) 

~U N) = bd- UK (3.20) 

for the recursion (3.16) and (3.17), where tc is an arbitrary positive number 
independent of N. 

Since 6 > 1, ~/~) and ~ )  are sufficiently small when N is large. On the 
other hand, if ~/and ~ are sufficiently small, (2.5) and (2.6) are written as 

z(,7, ~;),/= \ U  + ',,,z(,l, (3.21) 

where 

l ( ac + b + c ac ) (3.22) 
R = b c + b + c  ab a b + b + c  

and the functions T-(q, () and 2(r/, ~) obey the bounds 

I?(~, 4)1 < c~(~ + 4 ~) 

12(q, QI < C~(r# + ~'~) 
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for some constants independent of r/ and ~. Note that the matrix R has 
eigenvalues 6( > 1 ) and (b + c)/(bc + b + c)( < 1 ), with eigenvectors (;)  and 
( _1~ ), respectively. 

Then it is a routine work to show that the limits 

~/.= lim q}N) (3.23) 

~ , =  lim ~N) (3.24) 
N ~ o o  

exist and satisfy (3.12), (3.13), (3.14), (3.15) in Proposition 3.2. | 

In the next section, we study the sequence of random walks on Hn, 
n =  1, 2, 3,... with transition probabilities given by Table I with (r/, ( ) =  
(~,, ~) .  

4. H I T T I N G  T I M E S  

In our construction of the asymptotically one-dimensional diffusion 
process, the multi-distributions of numbers of steps of the random walks 
play the key role as is seen from the arguments for the Sierpiflski gasket in 
[ ref. 9, Section 2 ]. To this end, we analyze the generating functions for the 
numbers of steps of random walks on pre-abc-gaskets. A limit theorem 
related to the discrete-time multi-type non-stationary branching pro- 
cesses t~~ is then applied, which, with arguments in ref. 9, proves the exist- 
ence of the asymptotically one-dimensional diffusions on the abc-gaskets. 
See ref. 9 for details on the actual construction of the process. 

G e n e r a t i n g  Funct ions  

We consider a random walk o n  H N with transition probabilities given 
by Table I with t /=  t/N and ( = (N, where ?~W and (N are defined in Proposi- 
tion 3.2. In order to see the behavior of the walks in the scale of Hn, n < N, 
we generalize the set f2(X, t) of walks in Section 3 as follows. Fix a vertex 
X e  H ,  of the type A and denote the "adjacent" vertices of X in H~ by Ap, 
Aq, A", AI,! in an analogous way as in Fig. 4. In case (n, N) is (n - 1, n), the 
situation is exactly the same as Fig. 4, but in general, the figure has a finer 
structure. Let f2n,N(X, t), t =p ,  q, r, s, be the set of all walks starting at the 

vp t t  vt v! vertex X without reaching to any one of the vertices Ap, Aq, At, and A s 
before the end at A~'. Similarly we define the set Y2,,N(X, t) of  walks for 
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Fig. 4. 

y 5 

A r A A s 

The vertex A ~ H.  ~ belongs to two blocks of H..  We denote the vertices of H.  
t r t t contained in the two blocks by A, Ap, Aq, Ar, and A~. 

other types B, C, D, E, F of vertices X and for all directions t =p ,  q, r, s 
such that bonds of X, type exist. In particular, s'2(X, t ) =  g2~ 1,,(X, t). Put 

~"~n,N( X)= U ff2n, N ( g ' t ) '  X = A , B  ..... F (4.1) 
t = p ,  q ,  r,  s 

and set the probability Pn, N,X o n  ~'~n,N(X) by assigning to bonds of H N the 
transition probabilities given by Table I with t /=  ~]U and ~ = (U- Then, the 
probability 

rrT, ) = P. ,N,X(f2 . ,N(X,  t)) (4.2) 

is independent of N and is equal to the transition probability given by 
Table I with t/--t/~ and ~ = ~ .  We put 

H .  = diag(rc~'), rc~ ) ..... rdF~ )) (4.3) 

where diag(a, fl,..., y) stands for the diagonal matrix with diagonal elements 
~,/~,..., ~. 

For a walk co e g2, ,N(X) and for a set of 18 variables fi -- (uA~, ~TA~ ..... UFr), 
we use the following abbreviation 

~,,, _ ~l~olA,~l~olA,... ~ ; f  Fr (4.4) 
- -  A p  A q  r 
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where I~olx, is the number of passes of the walk ~o through bonds of X, 
type. Then the generating function of numbers of steps is by definition 

(71)n,N,X,t(Y)----Hn 1 E (HNU) ~' U - ~ ( A A ;  , UAq,...,UFr ) (4.5) 
(~) ~ g2n, N(X, t) 

and we write 

q~,,x(u) = (qS,,u,A,p(U), ~n,U,A,q(U),..., ~,,N,F,r(U)) (4.6) 

Note that (3.12) and (3.13) imply 

~n,N(I-IN~) ~-~ (4.7) 

where ]~ denote the vector with all elements 1. 

Renormalization Map for Generating Functions 

The generating function has a recursive structure. To see this, we 
introduce the set of variables 5 = (SA~, ~TA, ..... 5F~) and define the mapping 
(independent of n) 

U = F ( 5 )  (4.8) 

by putting 

Ux, = ~ 5 ~ 

(c%, c% ..... 

Note that (3.12) and (3.13) imply 

Hn_l~=F(Hn ]') 

Then the set of generating functions is written as 

~)n, N(u)  = I I n  1 ? N - -  n(1-INu) 

and hence is decomposed into the product of the mappings 

U= Hs ~(H,,u) 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 
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R e d u c t i o n  of  V a r i a b l e s  

The following lemma is easily shown. 

I_emma 4.1. If the variable ~ satisfy the "consistency conditions" 

Hattori and Watanabe 

/'~As = U~r '  ~*~O~ = ffa,,' ~7C, = ~7C,, (4.14) 

~lAp~lBq = UBs~IAq, ~As~lBq = ~IBrUAq , UApMCr = fiC?aA~ (4.15) 

~ ~ = . . . .  - -  . . . .  = ~  ~ ( 4 . 1 6 )  UAp~C s I'4Cp~Aq, UDqUAq - -  UDpUAq ~ UCrUFI, UC'pUF r 

~A~Oq~t~.,. = ~Ar~ ~D~ (4.17) 

then, U =  P(fi) also satisfy the same relations: 

D~,, = D ,~, D~, = D~,,, D G = Clc~ 

UA, Uc:, = Uc;, UA~, Uv~ UA,, = Up,, UA~, 

UAp U G = Uc~ UA~ 

(4.18) 

(4.19) 

(4.20) 

(4.21) UAp UI~,, U~; = UA, UE, Ulna. 

In order to sudy the total number of steps of random walks, it suffices to 
analyze the function - i - -  N - -  n = . . . .  U~r. In this H n F (HNU) only for uAp = UA~ 
case, ~t=Hnu satisfies the consistency conditions (4.14)-(4.17), since 
fi = H , ]  ~ satisfies (4.14)-(4.17). Then, as a result of the Lemma 4.1, we can 
reduce the 18 kinds of variables to 8 kinds. Our choice is the following: 

gl ~ blAr ~ Z2 ~ 1,lAp, Z3 z blAq ~ Z4 ~ UBr~ Z5 ~ UC ' 

Z 6 ~- UAp~lDq ~ UDpUAq , Z7 ~- bier ~ Z8 -~- ~lFr 

Namely, using the mapping 

A: u ~ (UAr, UAp, UAq, Uar, UCr, UApUDq, UE,., •Fr) (4.22) 

we put  

z = Au (4.23) 
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Note that under the consistency conditions in Lemma 4.1 the mapping A 
can be inverted. Define the matrix 

1 ~/. (n 1 1 
D n= d i a g  2 + r / n + ( , ' 2 + q n + ( ~ ' 2 + ~ G + (  n ' l + 2 r / ~ + ( n ' l + r / , + + 2 ( n '  

Since 

q.G 1 1 5 
+ ' (2 + q, + (,)(r/, + ( , ) '  1 ( ,  1 +r/s ; (4.24) 

DnA = AHn (4.25) 

the relation (4.13) is written as 

Z = D,5~_l F ( D , z )  (4.26) 

where 

F = A o F o A  -1 (4.27) 

Z = A g (4.28) 

(~n,N(U) = A 1OnlFN n(DNAU ) 

As a result, we have 

(4.29) 

Analysis of the Renormal izat ion M a p  

The analysis of the generating function qs,, N reduces to that of the 
renormalization map F. The following proposition is the technical core of 
our work. 

Proposit ion 4.2. The function F =  A o Fo A-1 has the expression 

F ( D n T + t ) = D , _ ~ T + A n t + R n ( t ) ,  n ~ Z + ,  Ht[I<C7 d - "  (4.30) 

where An is an 8 x 8 matrix independent of t and Rn is a CS-valued function 
with the following properties: 

(1) The function R,, is analytic on {t I Iltll < Csd -n} with the bound 

IjRn(t)ll ~< C9~ ~ Iltll 2, Iltll < Clod n, n ~ Z +  (4.31) 

for some positive constants C9 and C10 independent of N and t; 
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(2) There exists a matrix A such that 

HA -Anll < Cl~fi -n (4.32) 

where C~] is a constant independent of n; 

(3) The matrix A has eigenvalues 

(a + 1 )(2bc + b + c) 
(a+ l)(a+b+c), bc +b+c 

(a+ l)(b+c) b+c 
a+ l ,a+ l ,a+ l ,a+ l, 

bc+b+c 'bc+b+c 

The eight eigenvalues of A satisfy 

(a + 1)(2bc + b + c) 
(a+l)(a+b+c)> bc+b+c 

> a + l = a + l = a + l = a + l  

(a+ 1)(b+c) b+c 
> > 

bc+b+c bc+b+c 

In particular, the largest eigenvalue l= (a + 1)(a +b  + c) of A is simple. 
The eigenvalue 

fi _ (a + 1 )(b + c) 

bc+b+c 

appeared in Proposition 3.2. 

Sketch of Proofs of Proposition 2.1 and Proposition 4.2 

Proposition 2.1 is the result of the explicit calculation of the right hand 
side of (4.11). The proof of Proposition4.2 needs the first order Taylor 
expansion of the left hand side of (4.30) with the remainder estimate. In 
fact the complete proof of Proposition 4.2 is very long: As mentioned in the 
Introduction, the algebraic part of the proof is computer-aided. The output 
of computer amounts to about 9 x 105 Bytes. Then, it would not be 
worthwhile to describe the detail of the calculations but it is resonable to 
clatify the logical structure of our procedure so that a reader in principle 
can reproduce our calculations in a straightforward (long) way. 
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Fig. 5. 

5A4 

1 2 
The "interior" of a block of H,. We number the six vertices adjacent to "boundary 

points" of the block as above. 

We consider the "interior" of a block of Hn and number the six ver- 
tices adjacent to "boundary points" of the block as Fig. 5. Let s i, j = 
1, 2 ..... 6, be the set of all walks in the interior of the block starting at i and 
ending at j without reaching any one of the six vertices except for the start 
and the end. We define the matrix T =  T(f i )=  (To) by 

T/s = ~ t~,~,, i, j = 1, 2,..., 6 (4.33) 

In particular, we have 

T23 = uAq, T32 = ~TBq, etc. (4.34) 

It is also an easy exercise to show the following: 

2 a - /2"  
Tll = 2 , - 1 _ / 2 , - 1  + 1 --,7~ z~D, ' (4.35) 

24 __/2a 
T22= 2a l /2, I+I--u~quD~ (4.36) 

2--/2 
T23 =T32 = 2 - i _ ~ , _  ~(ffA~+~A~op) a-1 (4.37) 

where 2 and/2 are the roots of the quadratic equation 

x e - ( 1  --~A,,~D;,--(tA, ftO,,)X +(~Ar+~A,~D,,)2=O (4.38) 
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If 2 =kt ~ 0, the fractions should be evaluated after reductions. The other 
elements of the matrix T are given similarly. Put  

W = ( I -  T) l (4.39) 

Then W u gives the sum of fi'o over the set of all walks starting at i and 
ending at j, if the sum converges. 

Let us describe the program to calculate P defined by (4.8). As an 
example, we consider DAn in the right hand side of (4.10). Connecting two 
blocks as Fig. 4, we obtain 

1 
~A~ = ~  A (~lAp(W34bIBp~- W35~lCq)-]-~lAr(m24~lBp'~- W25/.~c,q)) (4.40) 

where 

OA = 1 - ~A,(W33ZTes + W32~A,)--blAq(W66~lCq ~- m61 ~A,.) 

-- ~lAr( W23 b~B, + W22 ~As) -- ~lAs( Wl6/~cq "~- W,I/~A,.) 

The other components of U =  F(5) are given similarly. 

Proo f  o f  Proposi t ion 2.1.  For  5 = H , f ,  the Eq. (4.38) has a double 
root 2 =H = 5A, + 5A~50,. Noting this fact, we explicitly calculate F(Hn] ')  
and obtain (4.11). | 

Proo f  o f  Proposi t ion  4.2.  The first term of the right hand side of 
(4.30) is obtain from (4.27), (4.25) and (4.11) as follows: 

F ( D , T )  = A o Fo A l (Dn]+ ) = A o P (H ,T)  = A ( H , _  ,T) = D , _  tT 

In order to obtain the second term, i.e., the derivative of P at ~7 = H,,]', we 
used REDUCE program on computer. In view of the explicit form of A,, 
produced by REDUCE,  we can show the statements on the matrices A,, 
and A. The bound on the third term is obtained by looking into the 
remainder term produced at each step on the way from ~ to gr described 
above. | 

C o n v e r g e n c e  of  t h e  D i f f u s i o n  Process 

In order to show the convergence of the sequence of random walks on 
H x considered above in the limit of N--+ 0% we study the asymptotic 
behavior of the generating function I~n, N or equivalently that of F N - n  (see 
(4.29)) as N--+ no with a fixed n. To this end, we put 

f ( n ' U ) ( s )  = r u n(O N exp( -- 1 NO N 1S)) (4.41) 
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T h e o r e m  4.3 .  
for every n e Z + : 

(1) 

(2) 

There exist positive constants e and C12 such that, 

The function f("'N)(s), N>~ n, is analytic on Ilsll < ~Z~6 -~ and con- 
verges uniformly to an analytic function f ( " ) ( s )  on Ilsll < el n6 " as 
N--* oo. 

The function f (n ) ( s )  has the expression 

f (n ) ( s )  = DnT  - l - n B n s  + r(n)(s), Ilsll < eln5 ~ (4.42) 

with the bound 

IIr(n)(s)ll ~< C12(~n1-2" IISII 2, IISll < e l " 5  " (4.43) 

where 

B , =  lim I-N+'A,,+IAn+2...AN (4.44) 
N~o~ 

Proof .  Since the largest eigenvalue I of A in Proposition 4.2 is simple, 
the function F = A o P o A 1 is ( { D,,, l} )-regular. [ For  the terminology, see 
ref. 10.] Then we can apply Theorem 2 in ref. 10 to our F and obtain the 
theorem. | 

The above theorem claims that the time unit of random walks on H N  
should be scaled as l -N.  Under this scaling, the standard tightness 
argument applies. The argument goes exactly parallel with that for the 
Sierpifiski gasket. [ See ref. 9 for detail. Theorem 4.3 above corresponds to 
Proposition 2.4 in ref. 9. ] Thus we arrive at Theorem 2.2. 

Remark. In ref. 5 it is proved, for a rather general situation, that 
l = N R  a. Here N (in our case) counts the number of blocks (triangles) in 
a triangle of one scale, or in other words, N = 2Jr; where d s is the fractal 
dimension. Ra is the resistance exponent for the one dimensional chain (in 
our case). (See also ref. 1 for the basic idea using "Einstein relations" to 
obtain such formula.) In the present case of the abc-gaske t ,  N =  a + b  + c 
and R a = a + 1, hence our formula is reproduced. (Other eigenvalues of A 
cannot be obtained by this method.) 

The eigenvalue 5 is denoted by fl ~ in ref. 5. In [ref. 5, Assump- 
t ion4.3] it is assumed that R G f l > I ,  which, in our notation, is l >  
(a + b + c)6. On the other hand, the corresponding assumptions for our 
method to work is embodied in the ({D,,, l} )-regularity assumed in 
[ref. 10, Theorem 2]. In particular, the assumption on the scaling factors is 
1 > 5 .  (Other conditions of the ({D, , /})-regular i ty  refer to other eigen- 
values of A and to estimates on remainder terms of F.) Since a + b + c > 1, 
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it seems that we have milder conditions than that of ref. 5. (One possible 
explanation is that ref. 5 uses resistance metric which works nicely with the 
Dirichlet form theories, which however does not correspond nicely with 
Euclidean metric when the spectral dimension (or its appropriate analog 
for the asymptotically one dimensional diffusions) is greater than 2.) 

A P P E N D I X .  CHOICE OF R A N D O M  W A L K  S E Q U E N C E  FOR 
THE M U L T I - P A R A M E T E R  CASE 

An important point in the choice of parameter sequences for the abc- 
gaskets in Proposition 3.2 is that we are dealing with the multi-parameter 
case. Namely, we are considering cases where random walks on a (finitely 
ramified) pre-fractal is specified by a set of more than one-non-negative 
parameters. In the case of the abc-gaskets, two parameters ~/ and ( are 
introduced. Another example of the multi-parameter case is the snowflake 
fractal317) As regards the asymptotically one-dimensional (lower dimen- 
sional) diffusions, such cases have not been considered for other fractals 
than the abc-gaskets. We here propose a general strategy suggested by the 
choice in Proposition 3.2, which may be applicable to other fractals. We 
leave it as an open problem to find general conditions with which the 
following idea may be applicable to construct asymptotically lower dimen- 
sional diffusions on fractals. 

Let r~> 1 be the number of parameters. Let Go c G1 c G2 c .. .  be a 
sequence of vertices of pre-fractals, and assume that for each n e Z+ a 
random walk Z,, on Gn is specified by the non-negative parameters 
p(n)=,(p~,,),p~n) ..... p~n)), chosen in such a way that for m < n ,  the 
m-decimated random walk of Z ,  is Zm. AS in (2.5) and (2.6), there exists 
an Rr-valued rational function F =  ~(/'~, F2,...,/ 'r) in r variables such that 

p(m =/-(p(,,+ 1)), n ~ Z +  (A.1) 

Let p* = '(p* ..... p*) be a fixed point of F with non-negative elements: 

F(p*) = p*, p* >1 O, i = 1, 2,..., r (A.2) 

Denote by J =  J(p) an r-dimensional matrix whose (i, j )  element Ji.j 
is given by Jo(P)= (t3FJOpfl(p). Let fi be that eigenvalue of J(p*) which 
has the largest absolute value. Assume that fi uniquely exists and is real 
and positive. To construct an asymptotically lower dimensional diffusion 
around p*, it is necessary that p* is an unstable fixed point of F, which 
implies 6 > 1. Let q* be an eigenvector of J(p*) corresponding to the eigen- 
value ~. 
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An intuitive choice is p ( n ) ~ p . +  fi ,q . ,  but from technical point of 
view, it is nicer to proceed in the following way. For  each N e Z+ ,  put 
p(N,N) = p ,  d- (~ Nq,, and define p(U,n), n = O, 1, 2,..., N, inductively by 

p(S,n 1) = F(p(N,n)), n = N, N -  1,..., 1 (A.3) 

Assume that 

satisfies 

]~(p) de f r ( p )  - p *  - J(p*)(p - p * )  (A.4) 

IPi(p)[ ~ c ~ (pj_p.)2,  /=  1, 2 . . . . .  r (A.5) 
j = l  

for some positive constant C independent of p. Let p(") = l imu~ o~ p(N.~), 
n e Z +. Then 

p(n 1) = F(p(n)), C l f i - " q * <  Pt (') - P i *  < C2fi nq,,  i = 1 , 2  ..... r, n e Z +  

(a.6) 

for some positive constants C1 and C2 independent of p. This provides a 
generalized form of the Proposition 3.2. 

General conditions on the fractals, for which this idea works, is left as 
an open problem. 
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